Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Eur J Med Genet ; 69: 104936, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38593953

RESUMEN

Osteopetrosis refers to a group of related rare bone diseases characterized by a high bone mass due to impaired bone resorption by osteoclasts. Despite the high bone mass, skeletal strength is compromised and the risk of fracture is high, particularly in the long bones. Osteopetrosis was classically categorized by inheritance pattern into autosomal recessive forms (ARO), which are severe and diagnosed within the first years of life, an intermediate form and an autosomal dominant (ADO) form; the latter with variable clinical severity and typically diagnosed during adolescence or in young adulthood. Subsequently, the AD form was shown to be a result of mutations in the gene CLCN7 encoding for the ClC-7 chloride channel). Traditionally, the diagnosis of osteopetrosis was made on radiograph appearance alone, but recent molecular and genetic advances have enabled a greater fidelity in classification of osteopetrosis subtypes. In the more severe ARO forms (e.g., malignant infantile osteopetrosis MIOP) typical clinical features have severe consequences and often result in death in early childhood. Major complications of ADO are atypical fractures with delay or failure of repair and challenge in orthopedic management. Bone marrow failure, dental abscess, deafness and visual loss are often underestimated and neglected in relation with lack of awareness and expertise. Accordingly, the care of adult patients with osteopetrosis requires a multidisciplinary approach ideally in specialized centers. Apart from hematopoietic stem cell transplantation in certain infantile forms, the treatment of patients with osteopetrosis, has not been standardized and remains supportive. Further clinical studies are needed to improve our knowledge of the natural history, optimum management and impact of osteopetrosis on the lives of patients living with the disorder.

2.
Biomolecules ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397376

RESUMEN

Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.


Asunto(s)
Colágeno Tipo X , Proteínas de la Matriz Extracelular , Osteoblastos , Pez Cebra , Animales , Diferenciación Celular , Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis/genética , Minerales/metabolismo , Osteoblastos/metabolismo , Transcriptoma/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Colágeno Tipo X/genética , Colágeno Tipo X/fisiología
3.
Am J Gastroenterol ; 119(2): 367-370, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734343

RESUMEN

INTRODUCTION: Osteoporosis in candidates for liver transplantation (LT) is often underdiagnosed despite the important consequences of morbidity. METHODS: We included 376 patients with cirrhosis evaluated for LT with available computed tomography (CT) scans. Prevalent vertebral fractures (VFs) were identified on CT reconstructions, and bone density was assessed by measuring CT attenuation of the L1 vertebra (L1-CT). RESULTS: We identified 139 VFs in 55 patients (14.6%). Logistic regression models showed that low L1-CT was the only independent determinant of VF. DISCUSSION: In patients with cirrhosis evaluated for LT, CT scans identified persons with severe osteoporosis without additional costs.


Asunto(s)
Trasplante de Hígado , Osteoporosis , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Humanos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/cirugía , Absorciometría de Fotón/métodos , Estudios Retrospectivos , Osteoporosis/complicaciones , Osteoporosis/diagnóstico por imagen , Osteoporosis/epidemiología , Densidad Ósea , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/epidemiología , Fracturas de la Columna Vertebral/cirugía , Tomografía Computarizada por Rayos X/métodos , Vértebras Lumbares , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico por imagen
4.
Sci Rep ; 13(1): 20052, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973963

RESUMEN

Glycemic variability remains frequent in patients with type 1 diabetes treated with insulin pumps. Heterogeneous spreads of insulin infused by pump in the subcutaneous (SC) tissue are suspected but were barely studied. We propose a new real-time ex-vivo method built by combining high-precision imaging with simultaneous pressure measurements, to obtain a real-time follow-up of insulin subcutaneous propagation. Human skin explants from post-bariatric surgery are imaged in a micro-computed tomography scanner, with optimised parameters to reach one 3D image every 5 min during 3 h of 1UI/h infusion. Pressure inside the tubing is recorded. A new index of dispersion (IoD) is introduced and computed upon the segmented 3D insulin depot per time-step. Infusions were hypodermal in 58.3% among 24 assays, others being intradermal or extradermal. Several minor bubbles and one occlusion were observed. IoD increases with time for all injections. Inter-assay variability is the smallest for hypodermal infusions. Pressure elevations were observed, synchronised with air bubbles arrivals in the tissue. Results encourage the use of this method to compare infusion parameters such as pump model, basal rate, catheter characteristics, infusion site characteristics or patient phenotype.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Hipoglucemiantes/uso terapéutico , Microtomografía por Rayos X , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Tejido Subcutáneo , Sistemas de Infusión de Insulina
5.
Nat Genet ; 55(11): 1820-1830, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919453

RESUMEN

Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.


Asunto(s)
Antebrazo , Fracturas Óseas , Animales , Ratones , Estudio de Asociación del Genoma Completo , Fracturas Óseas/genética , Densidad Ósea/genética , Factores de Riesgo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37660283

RESUMEN

BACKGROUND: Bone fragility fractures are associated with high morbidity and mortality. This study analysed the association between the current biochemical parameters of CKD-MBD and bone fragility fractures in the COSMOS project. METHODS: COSMOS is a 3-year, multicentre, open cohort, prospective, observational study carried out in 6797 hemodialysis patients (227 centres from 20 European countries). The association of bone fragility fractures (outcome) with serum calcium, phosphate and PTH (exposure), was assessed using Standard Cox proportional hazards regression and Cox proportional hazards regression for recurrent events. Additional analyses were performed considering all-cause mortality as a competitive event for bone fragility fracture occurrence. Multivariable models were used in all strategies, with the fully adjusted model including a total of 24 variables. RESULTS: During a median follow-up of 24 months 252 (4%) patients experienced at least one bone fragility fracture (incident bone fragility fracture rate 28.5 per 1000 patient-years). In the fractured and non-fractured patients, the percentage of men was 43.7% and 61.4%, mean age 68.1 and 63.8 years and a haemodialysis vintage of 55.9 and 38.3 months respectively. Baseline serum phosphate > 6.1 mg/dL (reference value 4.3-6.1 mg/dL) was significantly associated with a higher bone fragility fracture risk in both regression models (HR: 1.53[95%CI: 1.10-2.13] and HR: 1.44[95%CI: 1.02-2.05]. The significant association persisted after competitive risk analysis (subHR: 1.42[95%CI: 1.02-1.98]) but the finding was not confirmed when serum phosphate was considered as a continuous variable. Baseline serum calcium showed no association with bone fragility fracture risk in any regression model. Baseline serum PTH > 800 pg/mL was significantly associated with a higher bone fragility fracture risk in both regression models, but the association disappeared after a competitive risk analysis. CONCLUSIONS: Hyperphosphatemia was independently and consistently associated with an increased bone fracture risk, suggesting serum phosphate could be a novel risk factor for bone fractures in hemodialysis patients.

7.
JBMR Plus ; 7(6): e10741, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37283650

RESUMEN

Early-onset osteoporosis (EOOP) has been associated with several genes, including LRP5, coding for a coreceptor in the Wnt pathway. Variants in LRP5 were also described in osteoporosis pseudoglioma syndrome, combining severe osteoporosis and eye abnormalities. Genomewide-association studies (GWAS) showed that LRP5 p.Val667Met (V667M) variant is associated with low bone mineral density (BMD) and increased fractures. However, despite association with a bone phenotype in humans and knockout mice, the impact of the variant in bone and eye remains to be investigated. Here, we aimed to evaluate the bone and ocular impact of the V667M variant. We recruited 11 patients carrying the V667M variant or other loss-of-function variants of LRP5 and generated an Lrp5 V667M mutated mice. Patients had low lumbar and hip BMD Z-score and altered bone microarchitecture evaluated by HR-pQCT compared with an age-matched reference population. Murine primary osteoblasts from Lrp5 V667M mice showed lower differentiation capacity, alkaline phosphatase activity, and mineralization capacity in vitro. Ex vivo, mRNA expression of Osx, Col1, and osteocalcin was lower in Lrp5 V667M bones than controls (all p < 0.01). Lrp5 V667M 3-month-old mice, compared with control (CTL) mice, had decreased BMD at the femur (p < 0.01) and lumbar spine (p < 0.01) with normal microarchitecture and bone biomarkers. However, Lrp5 V667M mice revealed a trend toward a lower femoral and vertebral stiffness (p = 0.14) and had a lower hydroxyproline/proline ratio compared with CTL, (p = 0.01), showing altered composition and quality of the bone matrix. Finally, higher tortuosity of retinal vessels was found in the Lrp5 V667M mice and unspecific vascular tortuosity in two patients only. In conclusion, Lrp5 V667M variant is associated with low BMD and impaired bone matrix quality. Retinal vascularization abnormalities were observed in mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
Nat Commun ; 14(1): 2058, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045841

RESUMEN

WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.


Asunto(s)
Síndromes de Inmunodeficiencia , Osteoporosis , Enfermedades de Inmunodeficiencia Primaria , Receptores CXCR4 , Animales , Ratones , Síndromes de Inmunodeficiencia/genética , Mutación , Osteogénesis/genética , Osteoporosis/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Humanos
9.
Front Endocrinol (Lausanne) ; 14: 1104025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998472

RESUMEN

Objective: The aim of this systematic review was to determine if there exists an efficacious drug treatment for cherubism, based on published studies. Methods: This systematic review included observational case studies reporting pharmacological management of cherubism. We developed specific search strategies for PubMed (including Medline), ScienceDirect, Web of Science. We evaluated the methodological quality of the included studies using criteria from the Joanna Briggs Institute's critical appraisal tools. Results: Among the 621 studies initially identified by our search script, 14 were selected for inclusion, of which five were classified as having a low risk of bias, four as having an unclear risk, and five a high risk. Overall, 18 cherubism patients were treated. The sample size in each case study ranged from one to three subjects. This review identified three types of drugs used for cherubism management: calcitonin, immunomodulators and anti-resorptive agents. However, the high heterogeneity in case reports and the lack of standardized outcomes precluded a definitive conclusion regarding the efficacy of any treatment for cherubism. Conclusions: The present systematic review could not identify an effective treatment for cherubism due to the heterogeneity and limitations of the included studies. However, in response to these shortcomings, we devised a checklist of items that we recommend authors consider in order to standardize the reporting of cherubism cases and specifically when a treatment is given toward identification of an efficacious cherubism therapy. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351044, identifier CRD42022351044.


Asunto(s)
Querubismo , Humanos , Querubismo/tratamiento farmacológico , Resultado del Tratamiento
10.
RMD Open ; 9(1)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854566

RESUMEN

OBJECTIVES: To report the impact of continued burosumab treatment on clinical laboratory tests of efficacy, patient-reported outcomes (PROs) and ambulatory function in adults with X-linked hypophosphataemia who continued from a 96-week phase 3 study into a 48-week open-label extension. METHODS: Eligible participants from the phase 3 study continued on the burosumab regimen received at the end of the phase 3 study for a further 48 weeks (n=31). Some (not all) received compassionate burosumab treatment between the two studies (a period of 6-18 months). The primary efficacy outcome was fasting serum phosphate concentration; secondary outcomes were serum 1,25 dihydroxyvitamin D concentration, renal phosphate reabsorption, PROs and ambulatory function. RESULTS: Improvements in fasting serum phosphate, serum 1,25 dihydroxyvitamin D and renal phosphate reabsorption at 96 weeks were maintained through the 48-week extension. Improvements were also maintained in stiffness and physical function measured using the Western Ontario and McMaster Universities Osteoarthritis Index, pain and fatigue endpoints measuring using the Brief Pain Inventory short-form and Brief Pain Inventory, respectively, and in ambulatory function (6-Minute Walk Test).A post-hoc exploratory analysis exploring outcomes in participants who discontinued burosumab treatment between the studies (n=7) and those who received at least one dose (n=23) indicated that the benefits of burosumab on clinical laboratory tests of efficacy, PROs and ambulatory function may be lost when treatment is interrupted but recover over time when treatment is reinstated. CONCLUSION: Continued treatment with burosumab appears necessary for sustained clinical benefit. TRIAL REGISTRATION NUMBERS: Phase 3: NCT02526160; open-label extension: NCT03920072.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Adulto , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Dolor , Fosfatos
11.
Zebrafish ; 20(1): 1-9, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795617

RESUMEN

Wnt signaling is a key regulator of osteoblast differentiation and mineralization in humans and animals, mediated by the canonical Wnt/ß-catenin and noncanonical signaling pathways. Both pathways are crucial in regulating osteoblastogenesis and bone formation. The zebrafish silberblick (slb) carries a mutation in wnt11f2, a gene that contributes to embryonic morphogenesis; however, its role in bone morphology is unknown. wnt11f2 was originally known as wnt11; it was recently reclassified to avoid confusion in comparative genetics and disease modeling. The goal of this review is to summarize the characterization of the wnt11f2 zebrafish mutant and to deliver some new insights concerning its role in skeletal development. In addition to the previously described defects in early development in this mutant as well as craniofacial dysmorphia, we show an increase in tissue mineral density in the heterozygous mutant that points to a possible role of wnt11f2 in high bone mass phenotypes.


Asunto(s)
Osteogénesis , Pez Cebra , Humanos , Animales , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Transducción de Señal , Modelos Animales , Vía de Señalización Wnt , Diferenciación Celular
13.
Animals (Basel) ; 14(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38200805

RESUMEN

Osteoarthritis is a degenerative articular disease affecting mainly aging animals and people. The extracellular matrix protein Efemp1 was previously shown to have higher turn-over and increased secretion in the blood serum, urine, and subchondral bone of knee joints in osteoarthritic patients. Here, we use the zebrafish as a model system to investigate the function of Efemp1 in vertebrate skeletal development and homeostasis. Using in situ hybridization, we show that the efemp1 gene is expressed in the brain, the pharyngeal arches, and in the chordoblasts surrounding the notochord at 48 hours post-fertilization. We generated an efemp1 mutant line, using the CRISPR/Cas9 method, that produces a severely truncated Efemp1 protein. These mutant larvae presented a medially narrower chondrocranium at 5 days, which normalized later at day 10. At age 1.5 years, µCT analysis revealed an increased tissue mineral density and thickness of the vertebral bodies, as well as a decreased distance between individual vertebrae and ruffled borders of the vertebral centra. This novel defect, which has, to our knowledge, never been described before, suggests that the efemp1 mutant represents the first zebrafish model for spinal osteoarthritis.

14.
Nat Cardiovasc Res ; 1: 918-932, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36531334

RESUMEN

The mammalian skeletal system shows sex differences in structure, functions, ageing and disease incidences. The role of blood vessels in physiological, regenerative and pathological bone functions indicates the requisite to understanding their sex specificity. Here, we find oestrogen regulates blood vessel physiology during pregnancy and menopause through oestrogen receptor alpha (ERα) and G-protein coupled oestrogen receptor-1 (Gper1) but not ERß-dependent signalling in mice. Oestrogen regulates BECs' lipid use and promotes lipolysis of adipocytes and FA uptake from the microenvironment. Low oestrogen conditions skew endothelial FA metabolism to accumulate lipid peroxides (LPO), leading to vascular ageing. High ferrous ion levels in female BECs intensify LPO accumulation and accelerate the ageing process. Importantly, inhibiting LPO generation using liproxstatin-1 in aged mice significantly improved bone heath. Thus, our findings illustrate oestrogen's effects on BECs and suggest LPO targeting could be an efficient strategy to manage blood and bone health in females.

15.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291143

RESUMEN

Skeletal shape and mechanical properties define, to a large extent, vertebrate morphology and physical capacities. During development, skeletal morphogenesis results from dynamic communications between chondrocytes, osteoblasts, osteoclasts, and other cellular components of the skeleton. Later in life, skeletal integrity depends on the regulatory cascades that assure the equilibrium between bone formation and resorption. Finally, during aging, skeletal catabolism prevails over anabolism resulting in progressive skeletal degradation. These cellular processes depend on the transcriptional cascades that control cell division and differentiation in each cell type. Most Distal-less (Dlx) homeobox transcription factors are directly involved in determining the proliferation and differentiation of chondrocytes and osteoblasts and, indirectly, of osteoclasts. While the involvement of Dlx genes in the regulation of skeletal formation has been well-analyzed thanks to several mutant mouse models, the role of these genes in the maintenance of bone integrity has been only partially studied. The importance of Dlx genes for adult bone tissues is evidenced by their central role in the regulatory pathways involving Osx/Sp7 and Runx2, the two major master genes of osteogenesis. Dlx genes appear to be involved in several bone pathologies including, for example, osteoporosis. Indeed, at least five large-scale GWAS studies which aimed to detect loci associated with human bone mineral density (BMD) have identified a known DLX5/6 regulatory region within chromosome 7q21.3 in proximity of SEM1/FLJ42280/DSS1 coding sequences, suggesting that DLX5/6 expression is critical in determining healthy BMD. This review aims to summarize the major findings concerning the involvement of Dlx genes in skeletal development and homeostasis and their involvement in skeletal aging and pathology.


Asunto(s)
Desarrollo Óseo , Huesos , Proteínas de Homeodominio , Factores de Transcripción , Animales , Humanos , Ratones , Huesos/metabolismo , Huesos/patología , Desarrollo Óseo/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
16.
Cell Death Dis ; 13(9): 819, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153320

RESUMEN

Sarcomas include cancer stem cells, but how these cells contribute to local and metastatic relapse is largely unknown. We previously showed the pro-tumor functions of calpain-6 in sarcoma stem cells. Here, we use an osteosarcoma cell model, osteosarcoma tissues and transcriptomic data from human tumors to study gene patterns associated with calpain-6 expression or suppression. Calpain-6 modulates the expression of Hippo pathway genes and stabilizes the hippo effector YAP. It also modulates the vesicular trafficking of ß-catenin degradation complexes. Calpain-6 expression is associated with genes of the G2M phase of the cell cycle, supports G2M-related YAP activities and up-regulated genes controlling mitosis in sarcoma stem cells and tissues. In mouse models of bone sarcoma, most tumor cells expressed calpain-6 during the early steps of tumor out-growth. YAP inhibition prevented the neoformation of primary tumors and metastases but had no effect on already developed tumors. It could even accelerate lung metastasis associated with large bone tumors by affecting tumor-associated inflammation in the host tissues. Our results highlight a specific mechanism involving YAP transcriptional activity in cancer stem cells that is crucial during the early steps of tumor and metastasis outgrowth and that could be targeted to prevent sarcoma relapse.


Asunto(s)
Neoplasias Óseas , Calpaína , Osteosarcoma , Sarcoma , Proteínas Señalizadoras YAP , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Calpaína/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Proteínas Asociadas a Microtúbulos , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Proteínas Señalizadoras YAP/metabolismo , beta Catenina/metabolismo
17.
FASEB Bioadv ; 4(8): 524-538, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949513

RESUMEN

The Matrix Metalloproteinases are important regulators of bone metabolism and can influence bone mass and bone remodeling. We investigate the role of Matrix Metalloproteinase 3 (MMP3) on bone in mice, by using Mmp3 knockout (Mmp3 KO) in the context of estrogen deficiency, and in human, by analyzing the association of promoter polymorphism with bone mineral density in postmenopausal women and with MMP3 expression. We presented evidence in this paper that Mmp3 KO significantly increases trabecular bone mass and trabecular number and does not affect cortical bone thickness. We also found that Mmp3 KO protects from the deleterious effects of ovariectomy on bone mineral density in mice by preventing deterioration of bone microarchitecture. The effect of Mmp3 KO does not involve bone formation parameters but instead acts by inhibition of bone resorption, leading to a reduced bone loss associated to ovariectomy. By studying a human cohort, we found that a polymorphism located in the promoter of the human MMP3 gene is associated with bone mineral density in postmenopausal women and found that MMP3 rs632478 promoter variants are associated with change in promoter activity in transfection experiments. In conclusion MMP3, although weakly expressed in bone cells, could be one of the important regulators of sex hormone action in bone and whose activity could be targeted for therapeutic applications such as in Osteoporosis.

18.
Sci Adv ; 8(34): eabn3106, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36026443

RESUMEN

Articular cartilage has low regenerative capacity despite permanent stress. Irreversible cartilage lesions characterize osteoarthritis (OA); this is not followed by tissue repair. Lin28a, an RNA binding protein, is detected in damaged cartilage in humans and mice. We investigated the role of LIN28a in cartilage physiology and in osteoarthritis. Lin28a-inducible conditional cartilage deletion up-regulated Mmp13 in intact mice and exacerbated the cartilage destruction in OA mice. Lin28a-specific cartilage overexpression protected mice against cartilage breakdown, stimulated chondrocyte proliferation and the expression of Prg4 and Sox9, and down-regulated Mmp13. Lin28a overexpression inhibited Let-7b and Let-7c miRNA levels while RNA-sequencing analysis revealed five genes of transcriptional factors regulated by Let-7. Moreover, Lin28a overexpression up-regulated HMGA2 and activated SOX9 transcription, a factor required for chondrocyte reprogramming. HMGA2 siRNA knockdown inhibited the cartilage protective effect of Lin28a overexpression. This study provides insights into a new pathway including the Lin28a-Let7 axis, thus promoting chondrocyte anabolism in injured cartilage in mice.


Asunto(s)
Cartílago Articular , Osteoartritis , Proteínas de Unión al ARN , Factor de Transcripción SOX9 , Animales , Cartílago Articular/patología , Reprogramación Celular , Condrocitos , Metaloproteinasa 13 de la Matriz , Ratones , Osteoartritis/patología , Proteínas de Unión al ARN/genética , Factor de Transcripción SOX9/genética
19.
Calcif Tissue Int ; 111(4): 409-418, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927518

RESUMEN

The anti-fibroblast growth factor 23 monoclonal antibody burosumab corrects hypophosphatemia in adults with X-linked hypophosphatemia (XLH) and improves pain, stiffness, physical function, and fatigue. This post hoc subgroup analysis used data from the 24-week placebo-controlled period of a phase 3 study in 134 adults with XLH (ClinicalTrials.gov NCT02526160), to assess whether the benefits of burosumab are evident in 14 clinically relevant subgroups defined by baseline demographic and functional criteria, including sex, Brief Pain Inventory-short form (BPI-SF) Average And Worst Pain, region, race, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC®) Stiffness, Physical Function and Pain domains and total score, use of opioid/other pain medication, active fractures/pseudo-fractures, and 6-min walk test distance. There were no statistically significant interactions between any of the subgroups and treatment arm for any endpoint. Higher proportions of subjects achieved mean serum phosphate concentration above the lower limit of normal (the primary endpoint) with burosumab than with placebo in all subgroups. For the key secondary endpoints (WOMAC Stiffness and Physical Function; BPI-SF Worst Pain) individual subgroup categories showed improvements with burosumab relative to placebo. For additional efficacy endpoints, burosumab was favored in some subgroups but differences were not significant and confidence intervals were wide. For some endpoints the treatment effect is small at 24 weeks in all subjects. This subgroup analysis shows that burosumab was largely superior to placebo across endpoints in the 14 clinically relevant subgroup variables at 24 weeks and is likely to benefit all symptomatic adults with active XLH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Humanos , Dolor , Resultado del Tratamiento
20.
Orphanet J Rare Dis ; 17(Suppl 1): 261, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821070

RESUMEN

Turner syndrome (TS; ORPHA 881) is a rare condition in which all or part of one X chromosome is absent from some or all cells. It affects approximately one in every 1/2500 liveborn girls. The most frequently observed karyotypes are 45,X (40-50%) and the 45,X/46,XX mosaic karyotype (15-25%). Karyotypes with an X isochromosome (45,X/46,isoXq or 45,X/46,isoXp), a Y chromosome, X ring chromosome or deletions of the X chromosome are less frequent. The objective of the French National Diagnosis and Care Protocol (PNDS; Protocole National de Diagnostic et de Soins) is to provide health professionals with information about the optimal management and care for patients, based on a critical literature review and multidisciplinary expert consensus. The PNDS, written by members of the French National Reference Center for Rare Growth and Developmental Endocrine disorders, is available from the French Health Authority website. Turner Syndrome is associated with several phenotypic conditions and a higher risk of comorbidity. The most frequently reported features are growth retardation with short adult stature and gonadal dysgenesis. TS may be associated with various congenital (heart and kidney) or acquired diseases (autoimmune thyroid disease, celiac disease, hearing loss, overweight/obesity, glucose intolerance/type 2 diabetes, dyslipidemia, cardiovascular complications and liver dysfunction). Most of the clinical traits of TS are due to the haploinsufficiency of various genes on the X chromosome, particularly those in the pseudoautosomal regions (PAR 1 and PAR 2), which normally escape the physiological process of X inactivation, although other regions may also be implicated. The management of patients with TS requires collaboration between several healthcare providers. The attending physician, in collaboration with the national care network, will ensure that the patient receives optimal care through regular follow-up and screening. The various elements of this PNDS are designed to provide such support.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome de Turner , Adulto , Cromosomas Humanos X/genética , Femenino , Humanos , Cariotipo , Cariotipificación , Síndrome de Turner/diagnóstico , Síndrome de Turner/genética , Síndrome de Turner/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...